Auditory Sparse Representation for Robust Speaker Recognition Based on Tensor Structure

نویسندگان

  • Qiang Wu
  • Liqing Zhang
چکیده

This paper investigates the problem of speaker recognition in noisy conditions. A new approach called nonnegative tensor principal component analysis (NTPCA) with sparse constraint is proposed for speech feature extraction. We encode speech as a general higher-order tensor in order to extract discriminative features in spectrotemporal domain. Firstly, speech signals are represented by cochlear feature based on frequency selectivity characteristics at basilar membrane and inner hair cells; then, low-dimension sparse features are extracted by NTPCA for robust speaker modeling. The useful information of each subspace in the higher-order tensor can be preserved. Alternating projection algorithm is used to obtain a stable solution. Experimental results demonstrate that our method can increase the recognition accuracy specifically in noisy environments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Speaker Modeling Based on Constrained Nonnegative Tensor Factorization

Nonnegative tensor factorization is an extension of nonnegative matrix factorization(NMF) to a multilinear case, where nonnegative constraints are imposed on the PARAFAC/Tucker model. In this paper, to identify speaker from a noisy environment, we propose a new method based on PARAFAC model called constrained Nonnegative Tensor Factorization (cNTF). Speech signal is encoded as a general higher ...

متن کامل

Spectro-temporal modulation energy based mask for robust speaker identification.

Spectro-temporal modulations of speech encode speech structures and speaker characteristics. An algorithm which distinguishes speech from non-speech based on spectro-temporal modulation energies is proposed and evaluated in robust text-independent closed-set speaker identification simulations using the TIMIT and GRID corpora. Simulation results show the proposed method produces much higher spea...

متن کامل

A New IRIS Segmentation Method Based on Sparse Representation

Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...

متن کامل

A New IRIS Segmentation Method Based on Sparse Representation

Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...

متن کامل

Voice-based Age and Gender Recognition using Training Generative Sparse Model

Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • EURASIP J. Audio, Speech and Music Processing

دوره 2008  شماره 

صفحات  -

تاریخ انتشار 2008